Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Circ Res ; 134(8): 990-1005, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38456287

RESUMO

BACKGROUND: Growing evidence correlated changes in bioactive sphingolipids, particularly S1P (sphingosine-1-phosphate) and ceramides, with coronary artery diseases. Furthermore, specific plasma ceramide species can predict major cardiovascular events. Dysfunction of the endothelium lining lesion-prone areas plays a pivotal role in atherosclerosis. Yet, how sphingolipid metabolism and signaling change and contribute to endothelial dysfunction and atherosclerosis remain poorly understood. METHODS: We used an established model of coronary atherosclerosis in mice, combined with sphingolipidomics, RNA-sequencing, flow cytometry, and immunostaining to investigate the contribution of sphingolipid metabolism and signaling to endothelial cell (EC) activation and dysfunction. RESULTS: We demonstrated that hemodynamic stress induced an early metabolic rewiring towards endothelial sphingolipid de novo biosynthesis, favoring S1P signaling over ceramides as a protective response. This finding is a paradigm shift from the current belief that ceramide accrual contributes to endothelial dysfunction. The enzyme SPT (serine palmitoyltransferase) commences de novo biosynthesis of sphingolipids and is inhibited by NOGO-B (reticulon-4B), an ER membrane protein. Here, we showed that NOGO-B is upregulated by hemodynamic stress in myocardial EC of ApoE-/- mice and is expressed in the endothelium lining coronary lesions in mice and humans. We demonstrated that mice lacking NOGO-B specifically in EC (Nogo-A/BECKOApoE-/-) were resistant to coronary atherosclerosis development and progression, and mortality. Fibrous cap thickness was significantly increased in Nogo-A/BECKOApoE-/- mice and correlated with reduced necrotic core and macrophage infiltration. Mechanistically, the deletion of NOGO-B in EC sustained the rewiring of sphingolipid metabolism towards S1P, imparting an atheroprotective endothelial transcriptional signature. CONCLUSIONS: These data demonstrated that hemodynamic stress induced a protective rewiring of sphingolipid metabolism, favoring S1P over ceramide. NOGO-B deletion sustained the rewiring of sphingolipid metabolism toward S1P protecting EC from activation under hemodynamic stress and refraining coronary atherosclerosis. These findings also set forth the foundation for sphingolipid-based therapeutics to limit atheroprogression.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Humanos , Animais , Camundongos , Ceramidas/metabolismo , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/prevenção & controle , Proteínas Nogo , Esfingolipídeos/metabolismo , Esfingosina/metabolismo , Lisofosfolipídeos/metabolismo , Endotélio/metabolismo , Aterosclerose/genética , Aterosclerose/prevenção & controle , Apolipoproteínas E
2.
Circ Res ; 134(1): 81-96, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38037825

RESUMO

BACKGROUND: Elevated plasma ceramides and microvascular dysfunction both independently predict adverse cardiac events. Despite the known detrimental effects of ceramide on the microvasculature, evidence suggests that activation of the shear-sensitive, ceramide-forming enzyme NSmase (neutral sphingomyelinase) elicits formation of vasoprotective nitric oxide (NO). Here, we explore a novel hypothesis that acute ceramide formation through NSmase is necessary for maintaining NO signaling within the human microvascular endothelium. We further define the mechanism through which ceramide exerts beneficial effects and discern key mechanistic differences between arterioles from otherwise healthy adults (non-coronary artery disease [CAD]) and patients diagnosed with CAD. METHODS: Human arterioles were dissected from discarded surgical adipose tissue (n=166), and vascular reactivity to flow and C2-ceramide was assessed. Shear-induced NO and mitochondrial hydrogen peroxide (H2O2) production were measured in arterioles using fluorescence microscopy. H2O2 fluorescence was assessed in isolated human umbilical vein endothelial cells. RESULTS: Inhibition of NSmase in arterioles from otherwise healthy adults induced a switch from NO to NOX-2 (NADPH-oxidase 2)-dependent H2O2-mediated flow-induced dilation. Endothelial dysfunction was prevented by treatment with sphingosine-1-phosphate (S1P) and partially prevented by C2-ceramide and an agonist of S1P-receptor 1 (S1PR1); the inhibition of the S1P/S1PR1 signaling axis induced endothelial dysfunction via NOX-2. Ceramide increased NO production in arterioles from non-CAD adults, an effect that was diminished with inhibition of S1P/S1PR1/S1P-receptor 3 signaling. In arterioles from patients with CAD, inhibition of NSmase impaired the overall ability to induce mitochondrial H2O2 production and subsequently dilate to flow, an effect not restored with exogenous S1P. Acute ceramide administration to arterioles from patients with CAD promoted H2O2 as opposed to NO production, an effect dependent on S1P-receptor 3 signaling. CONCLUSION: These data suggest that despite differential downstream signaling between health and disease, NSmase-mediated ceramide formation is necessary for proper functioning of the human microvascular endothelium. Therapeutic strategies that aim to significantly lower ceramide formation may prove detrimental to the microvasculature.


Assuntos
Doença da Artéria Coronariana , Doenças Vasculares , Adulto , Humanos , Ceramidas , Peróxido de Hidrogênio , Células Endoteliais da Veia Umbilical Humana , Endotélio
3.
Am J Physiol Heart Circ Physiol ; 325(4): H882-H887, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37624099

RESUMO

At the American Physiology Summit 2023 session entitled, "Mental Health for Graduate Students," numerous students expressed struggling with poor mental well-being primarily because of negative experiences during their graduate training. In fact, studies show that up to 50% of graduate students report symptoms of depression, anxiety, or burnout during their training, and poor mental well-being is a major contributor to students' decision to leave academia. Most of the current solutions focus on treatment or wellness strategies; while these are important and necessary, the training environment or culture that often contributes to worsening well-being continues to persist. In this collaborative article between trainees and mentors across various career stages, we discuss how the pace of scientific advancements and the associated competition, lack of sufficient support for students from diverse backgrounds, and mentor-mentee relationships crucially influence graduate students' mental well-being. We then offer specific solutions at the individual, institutional, and national levels that can serve as a starting point for improving graduate students' mental health and overall training experience.


Assuntos
Saúde Mental , Bem-Estar Psicológico , Humanos , Estudantes
4.
bioRxiv ; 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37333082

RESUMO

Background: Elevated plasma ceramides independently predict adverse cardiac events and we have previously shown that exposure to exogenous ceramide induces microvascular endothelial dysfunction in arterioles from otherwise healthy adults (0-1 risk factors for heart disease). However, evidence also suggests that activation of the shear-sensitive, ceramide forming enzyme neutral sphingomyelinase (NSmase) enhances vasoprotective nitric oxide (NO) production. Here we explore a novel hypothesis that acute ceramide formation through NSmase is necessary for maintaining NO signaling within the human microvascular endothelium. We further define the mechanism through which ceramide exerts beneficial effects and discern key mechanistic differences between arterioles from otherwise healthy adults and patients with coronary artery disease (CAD). Methods: Human arterioles were dissected from otherwise discarded surgical adipose tissue (n=123), and vascular reactivity to flow and C2-ceramide was assessed. Shear-induced NO production was measured in arterioles using fluorescence microscopy. Hydrogen peroxide (H2O2) fluorescence was assessed in isolated human umbilical vein endothelial cells. Results: Inhibition of NSmase in arterioles from otherwise healthy adults induced a switch from NO to H2O2-mediated flow-induced dilation within 30 minutes. In endothelial cells, NSmase inhibition acutely increased H2O2 production. Endothelial dysfunction in both models was prevented by treatment with C2-ceramide, S1P, and an agonist of S1P-receptor 1 (S1PR1), while the inhibition of S1P/S1PR1 signaling axis induced endothelial dysfunction. Ceramide increased NO production in arterioles from healthy adults, an effect that was diminished with inhibition of S1P/S1PR1/S1PR3 signaling. In arterioles from patients with CAD, inhibition of NSmase impaired dilation to flow. This effect was not restored with exogenous S1P. Although, inhibition of S1P/S1PR3 signaling impaired normal dilation to flow. Acute ceramide administration to arterioles from patients with CAD also promoted H2O2 as opposed to NO production, an effect dependent on S1PR3 signaling. Conclusion: These data suggest that despite key differences in downstream signaling between health and disease, acute NSmase-mediated ceramide formation and its subsequent conversion to S1P is necessary for proper functioning of the human microvascular endothelium. As such, therapeutic strategies that aim to significantly lower ceramide formation may prove detrimental to the microvasculature.

5.
Endocrinology ; 164(6)2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37207450

RESUMO

Premenopausal women have a lower incidence of cardiovascular disease (CVD) compared with their age-matched male counterparts; however, this discrepancy is abolished following the transition to menopause or during low estrogen states. This, combined with a large amount of basic and preclinical data indicating that estrogen is vasculoprotective, supports the concept that hormone therapy could improve cardiovascular health. However, clinical outcomes in individuals undergoing estrogen treatment have been highly variable, challenging the current paradigm regarding the role of estrogen in the fight against heart disease. Increased risk for CVD correlates with long-term oral contraceptive use, hormone replacement therapy in older, postmenopausal cisgender females, and gender affirmation treatment for transgender females. Vascular endothelial dysfunction serves as a nidus for the development of many cardiovascular diseases and is highly predictive of future CVD risk. Despite preclinical studies indicating that estrogen promotes a quiescent, functional endothelium, it still remains unclear why these observations do not translate to improved CVD outcomes. The goal of this review is to explore our current understanding of the effect of estrogen on the vasculature, with a focus on endothelial health. Following a discussion regarding the influence of estrogen on large and small artery function, critical knowledge gaps are identified. Finally, novel mechanisms and hypotheses are presented that may explain the lack of cardiovascular benefit in unique patient populations.


Assuntos
Doenças Cardiovasculares , Terapia de Reposição de Estrogênios , Feminino , Masculino , Humanos , Idoso , Terapia de Reposição de Estrogênios/efeitos adversos , Endotélio Vascular , Estrogênios/uso terapêutico , Menopausa , Doenças Cardiovasculares/epidemiologia
6.
Am J Physiol Heart Circ Physiol ; 324(3): H330-H337, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36607795

RESUMO

Despite data showing that estrogen is vasculoprotective in large conduit arteries, hormone therapy (HT) during menopause has not proven to mitigate cardiovascular disease (CVD) risk. Estrogen exposure through prolonged oral contraceptive use and gender-affirming therapy can also increase cis- and trans-females' risk for future CVD, respectively. The microvasculature is a unique vascular bed that when dysfunctional can independently predict future adverse cardiac events; however, studies on the influence of estrogen on human microvessels are limited. Here, we show that isolated human arterioles from females across the life span maintain nitric oxide (NO)-mediated dilation to flow, whereas chronic (16-20 h) exposure to exogenous (100 nM) 17ß-estradiol promotes microvascular endothelial dysfunction in vessels from adult females of <40 and ≥40 yr of age. The damaging effect of estrogen was more dramatic in arterioles from biological males, as they exhibited both endothelial and smooth muscle dysfunction. Furthermore, females of <40 yr have greater endothelial expression of estrogen receptor-ß (ER-ß) and G protein-coupled estrogen receptor (GPER) compared with females of ≥40 yr and males. Estrogen receptor-α (ER-α), the prominent receptor associated with protective effects of estrogen, was identified within the adventitia as opposed to the endothelium across all groups. To our knowledge, this is the first study to report the detrimental effects of estrogen on the human microvasculature and highlights differences in estrogen receptor expression.NEW & NOTEWORTHY Microvascular dysfunction is an independent predictor of adverse cardiac events; however, the effect of estrogen on the human microcirculation represents a critical knowledge gap. To our knowledge, this is the first study to report sex-specific detrimental effects of chronic estrogen on human microvascular reactivity. These findings may offer insight into the increased CVD risk associated with estrogen use in both cis- and trans-females.


Assuntos
Receptores de Estrogênio , Doenças Vasculares , Masculino , Adulto , Feminino , Humanos , Arteríolas/metabolismo , Receptores de Estrogênio/metabolismo , Vasodilatação , Estradiol/farmacologia , Estradiol/metabolismo , Estrogênios/farmacologia , Estrogênios/metabolismo , Doenças Vasculares/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Endotélio Vascular/metabolismo
7.
Chest ; 163(2): 303-312, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36174744

RESUMO

BACKGROUND: Elevated hydrogen sulfide (H2S) contributes to vasodilatation and hypotension in septic shock, and traditional therapies do not target this pathophysiologic mechanism. High-dose IV hydroxocobalamin scavenges and prevents H2S formation, which may restore vascular tone and may accentuate recovery. No experimental human studies have tested high-dose IV hydroxocobalamin in adults with septic shock. RESEARCH QUESTION: In adults with septic shock, is comparing high-dose IV hydroxocobalamin with placebo feasible? STUDY DESIGN AND METHODS: We conducted a phase 2 single-center, double-blind, allocation-concealed, placebo-controlled, parallel-group pilot randomized controlled trial comparing high-dose IV hydroxocobalamin with placebo in critically ill adults with septic shock. Patients meeting Sepsis 3 criteria were randomized 1:1 to receive a single 5-g dose of high-dose IV hydroxocobalamin or equivalent volume 0.9% saline solution as placebo. The primary outcome was study feasibility (enrollment rate, clinical and laboratory compliance rate, and contamination rate). Secondary outcomes included between-group differences in plasma H2S concentrations and vasopressor dose before and after infusion. RESULTS: Twenty patients were enrolled over 19 months, establishing an enrollment rate of 1.05 patients per month. Protocol adherence rates were 100% with zero contamination. In the high-dose IV hydroxocobalamin group, compared to placebo, there was a greater reduction in vasopressor dose between randomization and postinfusion (-36% vs 4%, P < .001) and randomization and 3-h postinfusion (-28% vs 10%, P = .019). In the high-dose IV hydroxocobalamin group, the plasma H2S level was reduced over 45 mins by -0.80 ± 1.73 µM, as compared with -0.21 ± 0.64 µM in the placebo group (P = .3). INTERPRETATION: This pilot trial established favorable feasibility metrics. Consistent with the proposed mechanism of benefit, high-dose IV hydroxocobalamin compared with placebo was associated with reduced vasopressor dose and H2S levels at all time points and without serious adverse events. These data provide the first proof of concept for feasibility of delivering high-dose IV hydroxocobalamin in septic shock. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT03783091; URL: www. CLINICALTRIALS: gov.


Assuntos
Hipotensão , Choque Séptico , Adulto , Humanos , Choque Séptico/terapia , Hidroxocobalamina/uso terapêutico , Projetos Piloto , Vitamina B 12/uso terapêutico , Método Duplo-Cego , Vasoconstritores/uso terapêutico
8.
Am J Physiol Heart Circ Physiol ; 323(6): H1167-H1175, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306213

RESUMO

Microvascular disease plays a critical role in systemic end-organ dysfunction, and treatment of microvascular pathologies may greatly reduce cardiovascular morbidity and mortality. The Call for Papers collection: New Developments in Translational Microcirculatory Research highlights key advances in our understanding of the role of microvessels in the development of chronic diseases as well as therapeutic strategies to enhance microvascular function. This Mini Review provides a concise summary of these advances and draws from other relevant research to provide the most up-to-date information on the influence of cutaneous, cerebrovascular, coronary, and peripheral microcirculation on the pathophysiology of obesity, hypertension, cardiovascular aging, peripheral artery disease, and cognitive impairment. In addition to these disease- and location-dependent research articles, this Call for Papers includes state-of-the-art reviews on coronary endothelial function and assessment of microvascular health in different organ systems, with an additional focus on establishing rigor and new advances in clinical trial design. These articles, combined with original research evaluating cellular, exosomal, pharmaceutical, exercise, heat, and dietary interventional therapies, establish the groundwork for translating microcirculatory research from bench to bedside. Although numerous studies in this collection are focused on human microcirculation, most used robust preclinical models to probe mechanisms of pathophysiology and interventional benefits. Future work focused on translating these findings to humans are necessary for finding clinical strategies to prevent and treat microvascular dysfunction.


Assuntos
Hipertensão , Doenças Vasculares Periféricas , Humanos , Microcirculação/fisiologia , Microvasos , Endotélio
9.
Hypertension ; 79(10): 2250-2261, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36070401

RESUMO

BACKGROUND: Preclinical studies suggest that S1P (sphingosine-1-phosphate) influences blood pressure regulation primarily through NO-induced vasodilation. Because microvascular tone significantly contributes to mean arterial pressure, the mechanism of S1P on human resistance arterioles was investigated. We hypothesized that S1P induces NO-mediated vasodilation in human arterioles from adults without coronary artery disease (non-coronary artery disease) through activation of 2 receptors, S1PR1 (S1P receptor 1) and S1PR3 (S1P receptor 3). Furthermore, we tested whether this mechanism is altered in vessels from patients diagnosed with coronary artery disease. METHODS: Human arterioles (50-200 µm in luminal diameter) were dissected from otherwise discarded surgical adipose tissue, cannulated, and pressurized. Following equilibration, resistance vessels were preconstricted with ET-1 (endothelin-1) and changes in internal diameter to increasing concentrations of S1P (10-12 to 10-7 M) in the presence or absence of various inhibitors were measured. RESULTS: S1P resulted in significant dilation that was abolished in vessels treated with S1PR1 and S1PR3 inhibitors and in vessels with reduced expression of each receptor. Dilation to S1P was significantly reduced in the presence of the NOS (NO synthase) inhibitor Nω-nitro-L-arginine methyl ester and the NO scavenger 2-4-(carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. Interestingly, dilation was also significantly impaired in the presence of PEG-catalase (polyethylene glycol-catalase), apocynin, and specific inhibitors of NOX (NADPH oxidases) 2 and 4. Dilation in vessels from patients diagnosed with coronary artery disease was dependent on H2O2 alone which was only dependent on S1PR3 activation. CONCLUSIONS: These translational studies highlight the inter-species variation observed in vascular signaling and provide insight into the mechanism by which S1P regulates microvascular resistance and ultimately blood pressure in humans.


Assuntos
Doença da Artéria Coronariana , Vasodilatação , Arteríolas/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Lisofosfolipídeos , Esfingosina/análogos & derivados , Receptores de Esfingosina-1-Fosfato , Vasodilatação/fisiologia
10.
Int J Surg Case Rep ; 98: 107488, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35981485

RESUMO

INTRODUCTION: Catecholamine-resistant vasoplegia is a potentially devastating complication during liver transplantation. Hydroxocobalamin has emerged as a treatment for vasoplegia associated with cardiac surgery, liver transplantation, and septic shock. PRESENTATION OF CASE: We performed a retrospective review of patients who underwent liver transplantation between October 2015 and May 2020 to evaluate the efficiency of hydroxocobalamin in this setting. DISCUSSION: A total of 137 patients underwent liver transplantation, of which 20 received hydroxocobalamin for vasoplegia. Administration of hydroxocobalamin increased mean arterial pressure and reduced vasoactive drug requirements. CONCLUSION: This case series adds to the previous individual reports describing the use of hydroxocobalamin during liver transplantation suggesting hydroxocobalamin can mitigate refractory hypotension from catecholamine resistant vasoplegia during liver transplantation.

11.
BMC Anesthesiol ; 22(1): 240, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906533

RESUMO

BACKGROUND: Hypotension that is resistant to phenylephrine is a complication that occurs in anesthetized patients treated with angiotensin converting enzyme (ACE) inhibitors. We tested the hypothesis that Ang 1-7 and the endothelial Mas receptor contribute to vasodilation produced by propofol in the presence of captopril. METHODS: The internal diameters of human adipose resistance arterioles were measured before and after administration of phenylephrine (10-9 to 10-5 M) in the presence and absence of propofol (10-6 M; added 10 min before the phenylephrine) or the Mas receptor antagonist A779 (10-5 M; added 30 min before phenylephrine) in separate experimental groups. Additional groups of arterioles were incubated for 16 to 20 h with captopril (10-2 M) or Ang 1-7 (10-9 M) before experimentation with phenylephrine, propofol, and A779. RESULTS: Propofol blunted phenylephrine-induced vasoconstriction in normal vessels. Captopril pretreatment alone did not affect vasoconstriction, but the addition of propofol markedly attenuated the vasomotor response to phenylephrine. A779 alone did not affect vasoconstriction in normal vessels, but it restored vasoreactivity in arterioles pretreated with captopril and exposed to propofol. Ang 1-7 reduced the vasoconstriction in response to phenylephrine. Addition of propofol to Ang 1-7-pretreated vessels further depressed phenylephrine-induced vasoconstriction to an equivalent degree as the combination of captopril and propofol, but A779 partially reversed this effect. CONCLUSIONS: Mas receptor activation by Ang 1-7 contributes to phenylephrine-resistant vasodilation in resistance arterioles pretreated with captopril and exposed to propofol. These data suggest an alternative mechanism by which refractory hypotension may occur in anesthetized patients treated with ACE inhibitors.


Assuntos
Hipotensão , Propofol , Angiotensina II/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Arteríolas/fisiologia , Captopril/farmacologia , Humanos , Fenilefrina/farmacologia , Propofol/farmacologia
12.
Front Pharmacol ; 13: 875900, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444544

RESUMO

Chronic administration of exogenous adiponectin restores nitric oxide (NO) as the mediator of flow-induced dilation (FID) in arterioles collected from patients with coronary artery disease (CAD). Here we hypothesize that this effect as well as NO signaling during flow during health relies on activation of Adiponectin Receptor 1 (AdipoR1). We further posit that osmotin, a plant-derived protein and AdipoR1 activator, is capable of eliciting similar effects as adiponectin. Human arterioles (80-200 µm) collected from discarded surgical adipose specimens were cannulated, pressurized, and pre-constricted with endothelin-1 (ET-1). Changes in vessel internal diameters were measured during flow using videomicroscopy. Immunofluorescence was utilized to compare expression of AdipoR1 during both health and disease. Administration of exogenous adiponectin failed to restore NO-mediated FID in CAD arterioles treated with siRNA against AdipoR1 (siAdipoR1), compared to vessels treated with negative control siRNA. Osmotin treatment of arterioles from patients with CAD resulted in a partial restoration of NO as the mediator of FID, which was inhibited in arterioles with decreased expression of AdipoR1. Together these data highlight the critical role of AdipoR1 in adiponectin-induced NO signaling during shear. Further, osmotin may serve as a potential therapy to prevent microvascular endothelial dysfunction as well as restore endothelial homeostasis in patients with cardiovascular disease.

13.
Am J Physiol Heart Circ Physiol ; 322(1): H57-H65, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34797171

RESUMO

Cardiovascular disease risk increases with age regardless of sex. Some of this risk is attributable to alterations in natural hormones throughout the life span. The quintessential example of this being the dramatic increase in cardiovascular disease following the transition to menopause. Plasma levels of adiponectin, a "cardioprotective" adipokine released primarily by adipose tissue and regulated by hormones, also fluctuate throughout one's life. Plasma adiponectin levels increase with age in both men and women, with higher levels in both pre- and postmenopausal women compared with men. Younger cohorts seem to confer cardioprotective benefits from increased adiponectin levels yet elevated levels in the elderly and those with existing heart disease are associated with poor cardiovascular outcomes. Here, we review the most recent data regarding adiponectin signaling in the vasculature, highlight the differences observed between the sexes, and shed light on the apparent paradox regarding increased cardiovascular disease risk despite rising plasma adiponectin levels over time.


Assuntos
Adiponectina/metabolismo , Envelhecimento/metabolismo , Endotélio Vascular/metabolismo , Animais , Endotélio Vascular/crescimento & desenvolvimento , Humanos , Transdução de Sinais
14.
Microcirculation ; 28(3): e12658, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32939881

RESUMO

Traditionally thought of primarily as the predominant regulator of myocardial perfusion, it is becoming more accepted that the human coronary microvasculature also exerts a more direct influence on the surrounding myocardium. Coronary microvascular dysfunction (CMD) not only precedes large artery atherosclerosis, but is associated with other cardiovascular diseases such as heart failure with preserved ejection fraction and hypertrophic cardiomyopathy. It is also highly predictive of cardiovascular events in patients with or without atherosclerotic cardiovascular disease. This review focuses on this recent paradigm shift and delves into the clinical consequences of CMD. Concepts of how resistance arterioles contribute to disease will be discussed, highlighting how the microvasculature may serve as a potential target for novel therapies and interventions. Finally, both invasive and non-invasive methods with which to assess the coronary microvasculature both for diagnostic and risk stratification purposes will be reviewed.


Assuntos
Insuficiência Cardíaca , Microvasos , Circulação Coronária , Humanos , Volume Sistólico
15.
J Cardiothorac Vasc Anesth ; 35(6): 1839-1859, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32747202

RESUMO

Almost three-quarters of all heart failure patients who are older than 65 have heart failure with preserved ejection fraction (HFpEF). The proportion and hospitalization rate of patients with HFpEF are increasing steadily relative to patients in whom heart failure occurs as result of reduced ejection fraction. The predominance of the HFpEF phenotype most likely is explained by the prevalence of medical conditions associated with an aging population. A multitude of age-related, medical, and lifestyle risk factors for HFpEF have been identified as potential causes for the sustained low-grade proinflammatory state that accelerates disease progression. Profound left ventricular (LV) systolic and diastolic stiffening, elevated LV filling pressures, reduced arterial compliance, left atrial hypertension, pulmonary venous congestion, and microvascular dysfunction characterize HFpEF, but pulmonary arterial hypertension, right ventricular dilation and dysfunction, and atrial fibrillation also frequently occur. These cardiovascular features make patients with HFpEF exquisitely sensitive to the development of hypotension in response to acute declines in LV preload or afterload that may occur during or after surgery. With the exception of symptom mitigation, lifestyle modifications, and rigorous control of comorbid conditions, few long-term treatment options exist for these unfortunate individuals. Patients with HFpEF present for surgery on a regular basis, and anesthesiologists need to be familiar with this heterogeneous and complex clinical syndrome to provide successful care. In this article, the authors review the diagnosis, pathophysiology, and treatment of HFpEF and also discuss its perioperative implications.


Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Idoso , Diástole , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/terapia , Ventrículos do Coração , Humanos , Volume Sistólico , Função Ventricular Esquerda
16.
Am J Physiol Heart Circ Physiol ; 318(5): H1185-H1197, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32243770

RESUMO

The primary function of the arterial microvasculature is to ensure that regional perfusion of blood flow is matched to the needs of the tissue bed. This critical physiological mechanism is tightly controlled and regulated by a variety of vasoactive compounds that are generated and released from the vascular endothelium. Although these substances are required for modulating vascular tone, they also influence the surrounding tissue and have an overall effect on vascular, as well as parenchymal, homeostasis. Bioactive lipids, fatty acid derivatives that exert their effects through signaling pathways, are included in the list of vasoactive compounds that modulate the microvasculature. Although lipids were identified as important vascular messengers over three decades ago, their specific role within the microvascular system is not well defined. Thorough understanding of these pathways and their regulation is not only essential to gain insight into their role in cardiovascular disease but is also important for preventing vascular dysfunction following cancer treatment, a rapidly growing problem in medical oncology. The purpose of this review is to discuss how biologically active lipids, specifically prostanoids, epoxyeicosatrienoic acids, sphingolipids, and lysophospholipids, contribute to vascular function and signaling within the endothelium. Methods for quantifying lipids will be briefly discussed, followed by an overview of the various lipid families. The cross talk in signaling between classes of lipids will be discussed in the context of vascular disease. Finally, the potential clinical implications of these lipid families will be highlighted.


Assuntos
Ácidos Graxos/metabolismo , Microvasos/metabolismo , Fosfolipídeos/metabolismo , Esfingolipídeos/metabolismo , Animais , Ensaios Enzimáticos/métodos , Fluorometria/métodos , Humanos , Espectrometria de Massas/métodos , Transdução de Sinais
17.
J Cardiothorac Vasc Anesth ; 34(4): 857-864, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31836407

RESUMO

Randomized controlled trials (RCTs) provide important data to guide clinical decisions. Publication bias may limit the applicability of RCTs because many clinical investigators prefer to submit and journals more selectively accept studies with positive results. The authors tested the hypothesis that positive RCTs published in the Journal of Cardiothoracic and Vascular Anesthesia were more likely to be associated with factors known to predict publication of positive versus negative RCTs in other journals. This observational study was an internet analysis of all issues of Journal of Cardiothoracic and Vascular Anesthesia from 2004-2018. Each issue was searched to identify human RCTs. The numbers of centers and enrolled patients in each RCT were tabulated. The corresponding author determined the country of origin (United States v international). A trial was "positive" or "negative" based on rejection or confirmation of the null hypothesis, respectively, for the primary outcome variable or the majority of measured outcomes if a primary outcome was not identified. The presence or absence of a hypothesis, randomization methodology, sample size calculation, and blinded research design was recorded. Registration in a public database, Consolidated Statements of Reporting Trials (CONSORT) guideline compliance, and the source of funding also were determined. The number of citations for each RCT was determined by using Google Scholar; the citation rate was calculated as the ratio of the number of total citations and the duration in years since the trial's original publication. A total of 296 RCTs were identified, of which 58.8% reported positive results. Most RCTs were single center, relatively small, and international in origin. Total citations/RCT decreased over time, but citations/year did not. The percentage of RCTs that identified a randomization method, were registered, or followed CONSORT guidelines increased in a time-dependent manner. No differences in any factors associated with publication of RCTs were observed when positive and negative trials were compared. The Journal of Cardiothoracic and Vascular Anesthesia publishes more positive than negative RCTs, but factors that have been previously associated with RCT publication in other journals were similar between groups.


Assuntos
Anestesia , Anestesiologia , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
19.
Am J Physiol Heart Circ Physiol ; 317(4): H705-H710, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31397169

RESUMO

Chemotherapy (CT) is a necessary treatment to prevent the growth and survival of cancer cells. However, CT has a well-established adverse impact on the cardiovascular (CV) system, even years after cessation of treatment. The effects of CT drugs on tumor vasculature have been the focus of much research, but little evidence exists showing the effects on the host microcirculation. Microvascular (MV) dysfunction is an early indicator of numerous CV disease phenotypes, including heart failure. The goal of this study was to evaluate the direct effect of doxorubicin (Dox) on human coronary MV function. To study the effect of CT on the cardiac MV function, flow-mediated dilation (FMD), pharmacologically-induced endothelial dependent dilation to acetylcholine (ACh), and smooth muscle-dependent dilation to papaverine were investigated. Vessels were freshly isolated from atrial appendages of adult patients undergoing cardiopulmonary bypass surgery or from cardiac tissue of pediatric patients, collected at the time of surgery to repair congenital heart defects. Isolated vessels were incubated in endothelial culture medium containing vehicle or Dox (100 nm, 15-20 h) and used to measure dilator function by video microscopy. Ex vivo treatment of adult human coronary microvessels with Dox significantly impaired flow-mediated dilation (FMD). Conversely, in pediatric coronary microvessels, Dox-induced impairment of FMD was significantly reduced in comparison with adult subjects. In both adult and pediatric coronary microvessels, ACh-induced constriction was reversed into dilation in the presence of Dox. Smooth muscle-dependent dilation remained unchanged in all groups tested. In vessels from adult subjects, acute treatment with Dox in clinically relevant doses caused significant impairment of coronary arteriolar function, whereas vessels from pediatric subjects showed only marginal impairment to the same stressor. This interesting finding might explain the delayed onset of future adverse CV events in children compared with adults after anthracycline therapy.NEW & NOTEWORTHY We have characterized, for the first time, human microvascular responses to acute ex vivo exposure to doxorubicin in coronary vessels from patients without cancer. Our data show an augmented impairment of endothelial function in vessels from adult subjects compared with pediatric samples.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Arteríolas/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Doxorrubicina/toxicidade , Vasodilatação/efeitos dos fármacos , Adolescente , Fatores Etários , Idoso , Arteríolas/fisiopatologia , Cardiotoxicidade , Estudos de Casos e Controles , Criança , Pré-Escolar , Vasos Coronários/fisiopatologia , Feminino , Humanos , Técnicas In Vitro , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Vasodilatadores/farmacologia
20.
J Am Heart Assoc ; 8(17): e013153, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31462128

RESUMO

Background Elevated levels of ceramide, a sphingolipid known to cause a transition from nitric oxide (NO)- to hydrogen peroxide-dependent flow-induced dilation (FID) in human arterioles, correlate with adverse cardiac events. However, elevations of ceramide are associated with changed concentrations of other sphingolipid metabolites. The effects of sphingolipid metabolites generated through manipulation of this lipid pathway on microvascular function are unknown. We examined the hypothesis that inhibition or activation of the ceramide pathway would determine the mediator of FID. Methods and Results Using videomicroscopy, internal diameter changes were measured in human arterioles collected from discarded adipose tissue during surgery. Inhibition of neutral ceramidase, an enzyme responsible for the hydrolysis of ceramide, favored hydrogen peroxide-dependent FID in arterioles from healthy patients. Using adenoviral technology, overexpression of neutral ceramidase in microvessels from diseased patients resulted in restoration of NO-dependent FID. Exogenous sphingosine-1-phosphate, a sphingolipid with opposing effects of ceramide, also restored NO as the mediator of FID in diseased arterioles. Likewise, exogenous adiponectin, a known activator of neutral ceramidase, or, activation of adiponectin receptors, favored NO-dependent dilation in arterioles collected from patients with coronary artery disease. Conclusions Sphingolipid metabolites play a critical role in determining the mediator of FID in human resistance arterioles. Manipulating the sphingolipid balance towards ceramide versus sphingosine-1-phosphate favors microvascular dysfunction versus restoration of NO-mediated FID, respectively. Multiple targets exist within this biolipid pathway to treat microvascular dysfunction and potentially improve patient outcomes.


Assuntos
Tecido Adiposo/irrigação sanguínea , Arteríolas/metabolismo , Ceramidas/metabolismo , Doença da Artéria Coronariana/metabolismo , Vasodilatação , Adiponectina/farmacologia , Adulto , Idoso , Arteríolas/efeitos dos fármacos , Arteríolas/fisiopatologia , Estudos de Casos e Controles , Doença da Artéria Coronariana/fisiopatologia , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Hidrólise , Lisofosfolipídeos/farmacologia , Masculino , Pessoa de Meia-Idade , Ceramidase Neutra/antagonistas & inibidores , Ceramidase Neutra/genética , Ceramidase Neutra/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Vasodilatação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...